982 research outputs found

    Muons in gamma showers

    Get PDF
    Muon production in gamma-induced air showers, accounting for all major processes. For muon energies in the GeV region the photoproduction is by far the most important process, while the contribution of micron + micron pair creation is not negligible for TeV muons. The total rate of muons in gamma showers is, however, very low

    The Greisen Equation Explained and Improved

    Get PDF
    Analytic description of the evolution of cosmic ray showers is dominated by the Greisen equation nearly five decades old. We present an alternative approach with several advantages. Among the new features are a prediction of the differential distribution, replacing Greisen's form which fails to be positive definite. Explicit comparison with Monte Carlo simulations shows excellent agreement after a few radiation lengths of development. We find a clear connection between Monte Carlo adjustment of Greisen's form and underlying physics, and present a concise derivation with all steps explicit. We also reconstruct the steps needed to reproduce Greisen's approximate formula, which appears not to have been published previously.Comment: 8 pages, 7 figures, revised version, accepted for publication in Phys. Rev.

    Active Galactic Nuclei with Starbursts: Sources for Ultra High Energy Cosmic Rays

    Get PDF
    Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst in the radio galaxy Cen A pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across most of the sky.Comment: 4 pages, 1 figure, proceedings of "High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources", Heidelber

    The nature of the highest energy cosmic rays

    Get PDF
    Ultra high energy gamma rays produce electron--positron pairs in interactions on the geomagnetic field. The pair electrons suffer magnetic bremsstrahlung and the energy of the primary gamma ray is shared by a bunch of lower energy secondaries. These processes reflect the structure of the geomagnetic field and cause experimentally observable effects. The study of these effects with future giant air shower arrays can identify the nature of the highest energy cosmic rays as either gamma-rays or nuclei.Comment: 15 pages of RevTeX plus 6 postscript figures, tarred, gzipped and uuencoded. Subm. to Physical Review

    Limits on models of the ultrahigh energy cosmic rays based on topological defects

    Get PDF
    An erratum exists for this article. Please see the description link below for details.Using the propagation of ultrahigh energy nucleons, photons, and electrons in the universal radiation backgrounds, we obtain limits on the luminosity of topological defect scenarios for the origin of the highest energy cosmic rays. The limits are set as a function of the mass of the X particles emitted by the cosmic strings or other defects, the cosmological evolution of the topological defects, and the strength of the extragalactic magnetic fields. The existing data on the cosmic ray spectrum and on the isotropic 100 MeV gamma-ray background limit significantly the parameter space in which topological defects can generate the flux of the highest energy cosmic rays, and rule out models with the standard X-particle mass of 10¹⁶GeV and higher.R. J. Protheroe and Todor Stane

    A three-dimensional calculation of atmospheric neutrinos

    Full text link
    A Monte-Carlo calculation of the atmospheric neutrino fluxes [1,2] has been extended to take account of the three-dimensional (3D) nature of the problem, including the bending of secondary particles in the geomagnetic field. Emphasis has been placed on minimizing the approximations when introducing the 3D considerations. In this paper, we describe the techniques used and quantify the effects of the small approximations which remain. We compare 3D and 1D calculations using the same physics input in order to evaluate the conditions under which the 3D calculation is required and when the considerably simpler 1D calculation is adequate. We find that the 1D and 3D results are essentially identical for neutrino energy greater than 5 GeV except for small effects in the azimuthal distributions due to bending of the secondary muon by the geomagnetic field during their propagation in the atmosphere.Comment: 24 pages, 15 figures, LaTeX, to be submitted to Physical Review

    Charged Higgs boson contribution to ντNτX\nu_{\tau} {\cal N} \to \tau^- X for very large tanβ\tan\beta in the two Higgs doublet model with UHE-neutrinos

    Full text link
    We study the deep inelastic process ντ+Nτ+X\nu_{\tau} + {\cal N} \to \tau^{-} + X (with N(n+p)/2{\cal N} \equiv (n+p)/2 an isoscalar nucleon), in the context of the two Higgs doublet model {\it type two} (2HDM(II)). In particular, we discuss the contribution to the total cross section of diagrams, in which a charged Higgs boson is exchanged. We show that for large values of tanβ\tan\beta such contribution for an inclusive dispersion generated through the collision of an ultrahigh energy tau-neutrino on a target nucleon can reach up to 57% of the value of the contribution of the W+W^+ exchange diagrams (i.e. can reach up to 57% of the standard model (SM) prediction) and could permit to distinguish between the SM and the 2HDM(II) predictions at the Pierre Auger Observatory.Comment: 10 pages, 5 figure

    Oscillations of solar atmosphere neutrinos

    Get PDF
    The Sun is a source of high energy neutrinos (E > 10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged ``vacuum'' oscillations, dominated by a single mixing parameter (the angle theta_23).Comment: v2: 11 pages, 8 eps figures. Content added (Sec. III D and Fig. 6), references updated. Matches the published versio
    corecore